10 Commits

Author SHA1 Message Date
8fc6112f58 docs: пояснил по поводу Makefile в README 2024-09-24 12:17:40 +03:00
23b82657d4 docs: внес маленькое пояснение в README 2024-09-24 12:11:54 +03:00
78a4638401 fix: исправлено форматирование вывода 2024-09-24 12:06:11 +03:00
e1aeb3f2df feat: сделан первый прототип решения
Прототип еще не тестировался
2024-09-23 20:45:46 +03:00
ed21dfe07a fix: исправил работу с циклами 2024-09-23 18:49:23 +03:00
6c1198df73 sync: прописал часть логики для 4 пункта 2024-09-22 23:57:16 +03:00
58897fedb7 feat: добавлена процедура pollin 2024-09-22 22:07:18 +03:00
51e220410a feat: добавлено несколько полезных функций для решения 4 пункта 2024-09-22 17:55:49 +03:00
49d3c02d7d feat: task2 создан
Решен второй пункт в виде ассемблерного кода, однако он отформатирован вполне определенным образом
2024-09-22 15:27:21 +03:00
daec968bcb feat(utils): для чуть большего удоства написал Makefile
По факту он просто линкует одиночный файл ассемблерного кода и не подшивает никаких зависимостей. Весьма ситуативная фигня, но немного экономит время
2024-09-22 13:18:59 +03:00
9 changed files with 323 additions and 446 deletions

View File

@ -2,145 +2,3 @@
## Введение в низкоуровневое программирование. Встроенный отладчик. Встроенный Ассемблер
## Переписываем шаблон
Поскольку весь шаблонный текст написан под MS-DOS, мы очевидным образом не можем его использовать для решения задачи под linux.
Замены требуют следующие функции:
- getch
- delay
- inp
- bioskey
### getch
Наиболее простая замена будет для `getch()`, поскольку единственное ее назначение - ожидать нажатия клавиши. В этом контексте у линукса есть полноценная замена в виде `system("pause")`
### delay
Здесь уже несколько посложнее, потому что DOS'овский `delay` использует задержку в миллисекундах, а линуксовый `sleep` - в секундах. Поэтому используем функцию `usleep`. Она принимает время задержки в микросекундах, поэтому для получения миллисекунда нужно просто умножить на 1000. То есть код:
```C
void delay(unsigned ms)
{
usleep(ms * 1000);
}
```
### bioskey
Из всех пока что самая сложная замена. Если вызвать `bioskey(1)`, то она вытаст 1 если какая либо клавиша была нажата и 0 если не была. при этом проверка происходит в моменте и не блокирует выполнение программы.
Для иммитации этого на линуксе нам потребуется неканонический режим ввода в терминал, а также сделать так, чтобы все печатаемое не выводилось в курсор. Этого можно добиться 2 способами:
1. Покурить гигагалактический томик по ассемблеру и узнать про системный вызов ioctl, после чего руками разметить область оперативной памяти, провести все системные вызовы, потом при помощи poll проверять наличие символов в буфере, обрабатывать ошибки и интегрировать функции через прототипы в наш код на C
2. Сдаться и выбрать путь языка C
Я уже сказал, что я из слабых, поэтому писать кусок на ассемблере как-то не горю желанием (хотя может когда-нибудь в будущем по просьбам напишу)
#### Зависимости
Язык программирования C имеет определенный уровень абстракции от конкретных системных вызовов и предоставляет нам несколько вещей:
- `<termios.h>` - структура данных, хранящая информацию о текущем состоянии терминала, а также удобные методы `tcgetattr` и `tcsetattr`
- `<unistd.h>` - Библиотека, используемая для унификации дескрипторов, битов и прочих унификаций
- `<stdlib.h>` - много чего, но нам для безопасности потребуется `atexit`, чтобы если что-то пошло не так, у нас не наебнулся терминал
Опционально берется `<stdio.h>` для целей адекватного вывода ошибок. Не обязательно, но предпочтительно
#### Реализация
Для начала нам необходимо сохранить свой текущий терминал, чтобы без проблем его восстановить в будущем, для этого заводим в памяти переменную (придется сделать ее глобальной, потому что на инкапсуляцию и защиту нет времени, нервов и желания)
```C
struct termios saved_attributes;
```
Далее сразу напишем функцию для восстановления
```C
void reset_input_mode()
{
tcsetattr (STDIN_FILENO, TCSANOW, &saved_attributes);
}
```
Здесь `STDIN_FILENO` - это дескриптор потока стандартного ввода (ввод с консоли по простяге). Вообще это число, но в `<unistd.h>` он вынесен в макрос для хоть какой-то унификации, `TCSANOW` - тоже число. В контексте функции `tcsetattr` оно заставляет изменениям в формате терминала вступить в силу немедленно, вне зависимости от того, есть ли еще в буфере текст на вывод. Другими вариантами могут стать:
- `TCSANOW` - применить изменения сразу при сигнале и продолжать предыдущий вывод с того же места, где он кончился
- `TCSADRAIN` - заставит сначала очистить текущий буфер вывода до дна, а только потом сменит режим. То есть сначала все, что было на момент запроса в буфере, будет выведено, а только потом сменится режим терминала
- `TCSAFLUSH` - то же, что и `TCSADRAIN`, только еще и сносит весь буффер ввода
```C
void set_input_mode()
{
struct termios tattr;
char *name;
// Убеждаемся, что STDIN - это терминал
if (!isatty (STDIN_FILENO))
{
fprintf (stderr, "Not a terminal.\n");
exit (EXIT_FAILURE);
}
// Сохраняем параметры текущего терминала
//для последующего восстановления
tcgetattr (STDIN_FILENO, &saved_attributes);
atexit (reset_input_mode);
// Устанавливаем все режимы, которые
// нас в общем-то интересуют
tcgetattr (STDIN_FILENO, &tattr);
tattr.c_lflag &= ~(ICANON|ECHO); /* Clear ICANON and ECHO. */
tattr.c_cc[VMIN] = 0;
tattr.c_cc[VTIME] = 0;
tcsetattr (STDIN_FILENO, TCSAFLUSH, &tattr);
}
```
**Разберем некоторые строки подробнее**
`isatty(STDIN_FILENO)` - в целом `isatty` просто проверяет, является ли дескриптор файла консолью в общем смысле этого слова. Вообще в линуксе `tty` означает teletype - консоли, которые могут использоваться для выполнения команд, восстановления системы и прочего. В некоторых дистрибутивах между ними можно даже переключаться, но так как я на wsl, мне эта роскошь не доступна
`fprintf` - функция, позволяющая делать "форматированный вывод" в поток дескриптора. То есть это как `prinf`, только еще и дескрипторы принимает
`EXIT_FAILURE` и `EXIT_SUCCESS` - обозначают 1 и 0 соответственно. Используются чтобы избежать неявной договоренности между пользователями линукс, что при возвращении нуля из функции - это успех, а другого - ошибка
Очевидным образом если `tcsetattr` устанавливал параметры терминала, то `tcgetattr` должен их получать. В качестве второго параметра принимает указатель на структуру данных, где должен их сохранить. В нашем случае ей выступает упоминавшаяся выше глобальная переменная
После получения параметров мы начинаем c ними играться в флагах. В данном случае я вырубаю `ICANON` тем самым говоря, что вводить `enter` при вводе команд не обязательно, а также рублю флаг `ECHO`, из-за чего набираемые с клавиатуры символы не отображаются
`VMIN` говорит о том, что одного символа в буфере достаточно, чтобы считать, что пользователь ввел все, что хотел. Есть еще параметр `VTIME`, который говорит, что если буфер не меняется какое-то время, то пользователь закончил
Остальное нам вроде бы знакомо =)
<!---Тут следует следить за обновлениями кода в substitutions.py, а то неактуальный код - большая беда-->
## Исправление ассемблерных вставок
Должен сказать, что я не большой поклонник "inline assembly". На мой субъективный взгляд намного лучше, читаемее и стабильнее добавлять ассемблер на этапе линковки. Это дает несколько приятных бонусов:
1. Код можно поддерживать на любимом ассемблере
2. Код ассемблера можно компилить отдельно
3. Код программы на C становится ощутимо чище (*лично на мой взгляд ассемблерные вставки плохо смотрятся в коде*), а также все макросы ассемблера не касаются кода на C
4. Меньше потенциальных ошибок из-за того, что вы что-то не так поняли и откомпилировалось все неправильно
Помимо прочего очень важный момент: я использую gcc для компиляции, а в отличие от clang, он довольно ленивый и наши строки для ассемблера в нетронутом виде отправятся прямо в текст программы, которая затем будет скормлена ассемблеру. Отсюда следует несколько нюансов:
- Стандартный ассемблер, используемый `gcc` - `as` и по умолчанию он использует синтаксис AT&T. Однако я не очень люблю этот синтаксис, предпочитаю работать с синтаксисом intel. Выхода тут 2:
- Дать компилятору флаг -masm=intel, после чего уже собственный ассемблер переключится на intel синтаксис
- В начале каждой ассемблерной вставки ставить ".intel_syntax noprefix", а после вставки но перед параметрами ставить ".att_syntax prefix". Это может периодически плохо работать
- При написании ассемблера необходимо соблюдать все переносы строк и при этом указывать это явно (поэтому в конце строк у меня и появляются `\n\t` - это поддержание табуляции и переноса строки
- Компилятору надо понимать, что будет происходить с переменными и регистрами во время ассемблерной вставки, поэтому и это тоже придется указать отдельно
Собственно видно, что есть ньансы, которые и заставляют меня сделать выбор в пользу обычного ассемблера и линковки, но раз лаба хочет, чтобы использовался именно inline, то будем использовать inline
UPD 12.09.24 22:00: в самый последний момент преподаватель решил в своей методички пингануть адрес в памяти, который в ms-dos отведен для хранени данных BIOS, а конкретнее ту часть, которая отведена под системные часы насколько я понимаю. В случае DOS это вполне себе реальная память, которая вполне себе реально существует более того, в досе процессор находится в режиме реальных адресов. Linux в свою очередь относится к приколам с обращением к произвольному участку памяти как к уязвимостям, поэтому не дает просто почитать или пописать в непромапаную память. Но это пол беды на самом-то деле, ведь вся память у любой программы виртуальная и уже на уровне операционной системы и процессора перегонятся в виртуальную, поэтому даже если я воспользуюсь `mmap` и промапаю соответствующий адрес в памяти, в нем будет просто лежать мусор и не более. Поэтому последнюю часть работы, где достается время из памяти BIOS я пропускаю за невозможностью ее выполнить на машине на базе Linux
## Замеры времени ассемблерной команды
Мне лабораторную работу зачли и без этой части, но если кто-то будет сдавать ему лабу так же как и я, такое возможно не проканает, поэтому для решения задачи замера приложен файлик time.asm (по крайней мере должен быть, если я не забыл). В нем в комментариях я постарался пояснить все этапы замера времени. Но для базового понимания придется сделать некоторые пояснения относительно организационных решений. В методичке преподаватели предпочли обратиться к чтению из промапаной области памяти BIOS, так называемой BIOS data area. Неплохой вариант, если есть прямой доступ к памяти устройства, поскольку BIOS хранит в памяти довольно много полезных данных. Однако из пользовательских программ простучать эту память не получается, потому что linux будет выдавать ошибку даже если такие программы запускать под рутом.
Однако как же тогда получать время и делать другие манипуляции? Довольно просто на самом деле - системными вызовами. Системный вызов - это программное прерывание, которое просит операционную систему в режиме ядра выполнить какую-то работу: получить время, установить время, поменять разрешения на порты, сменить режимы терминала и очень многое другое вплоть до создания X-server'а. Найти системные вызовы можно прогуглив `linux syscalls table`. От себя порекомендую этот [сайт](https://syscalls.mebeim.net/?table=x86/64/x64/latest). Они вытаскивают системные вызовы из каждой версии ядра. Также возможный, пусть и требующий значительно больше знаний вариант - посмотреть стандартную библиотеку вашего компилятора C. Дело в том, что сам язык C довольно мал и весь его огромный функционал завязан на не таком уж и большом количестве зарезервированных слов и конструкций. В целом сопоставление между C и ассемблером, если компилировать без оптимизаций компилятора (`-O0`), выходит довольно однозначное. И эта же особенность заставляет постоянно переписывать те библиотеки в C, которые зависят от системы или архитектуры. **Не мудрено, что и системные вызовы тоже хранятся где-то в заголовках**. Однако я тут ничего не подскажу, так как так и не понял, где эти номера нормально записаны. Если вы знаете - пишите.

View File

@ -1,135 +0,0 @@
#include <stdio.h>
#include <sys/io.h>
#include <stdlib.h>
#include <unistd.h>
#include "substitutions.h"
#define PortCan0 0x40
void beep(unsigned iTone, unsigned iDlit);
void delay(unsigned int ms)
{
usleep(ms * 1000);
}
int main(void) {
long int lCnt = 0;
int iA = 0x1234;
char *pT = (char *)0x46C;
printf("\nПечатаем 10 раз значение байта с известным адресом\n");
for (int i = 0; i < 10; i++)
{
printf(" \n %d ", *pT);
}
printf("\n Для продолжения нажмите любую клавишу \n");
system("pause"); // Ждем нажатия клавиши
printf("\n Читаем содержимое порта с адресом 40 с помощью функции Си \n");
printf("\n Для выхода из цикла - нажмите любую клавишу \n");
// Линуксу не сильно нравится, что ты насилуешь порты ввода и вывода процессора, поэтому нужно выдать ему на это дело разрешение
ioperm(PortCan0, 1, 3); // Что означает тройка напишу позже
set_input_mode();
while (isKeyPressed() == 0) {
printf("\n Порт40 = %d", inb(PortCan0));
delay(500);
}
reset_input_mode();
system("pause");
printf("\n Читаем содержимое порта с адресом 40 ассемблером \n");
set_input_mode();
while (isKeyPressed() == 0) {
// asm {
// push ax
// in al,0x40
// }
unsigned char Tmm = 0;
asm (
"push rax\n\t"
"in al, 0x40"
"mov %0, al"
"pop rax"
:"=r"(Tmm)
:
:"rax"
);
delay(500);
printf("\n Порт40 = %d", Tmm);
}
reset_input_mode();
system("pause");
printf("\n Для продолжения - нажмите любую клавишу \n");
system("pause");
long *pTime = (long *)0x46C;
set_input_mode();
while (isKeyPressed() == 0) {
printf("\n %ld", *pTime);
delay(1000);
}
reset_input_mode();
system("pause");
// Данная секция закомментирована, поскльку линукс не дает обратиться к
// не промапанной и не аллоцированной памяти. Но даже если ее аллоцировать
// mmem'ом, все равно эта память будет виртуальная, поэтому смысла делать
// это не имеет. Вариант просмотра содержимого условной ячейки памяти на nasm
// приведен в файле time.asm. Объяснить тот код, который я вижу
// на базовом уровне я в состоянии
// int Time;
// set_input_mode();
// while (isKeyPressed() == 0) {
// Здесь происходит операция получения времени суток при
// помощи обращения к специально размеченой области памяти
// Однако можно ли такой фокус сделать в linux это еще надо узнать
// asm push ds
// asm push si
// asm mov ax, 40h
// asm mov ds, ax
// asm mov si, 0x6C
// asm mov ax, [ds : si]
// asm mov Time, ax
// asm pop si
// asm pop ds
// asm(
// "mov "
// );
//
// printf("\n %d", Time);
// delay(300);
// }
// reset_input_mode();
//
// beep(400, 200);
// for (lCnt = 0; lCnt < 1000000; lCnt++) {
// a1:
// asm {
// mov ax,iA
// mov ax,iA
// mov ax,iA
// mov ax,iA
// mov ax,iA
// mov ax,iA
// mov ax,iA
// mov ax,iA
// mov ax,iA
// a2:
// mov ax,iA
// }
// }
// beep(400, 200);
// здесь секция для выполнения замеров времени. Поскольку доступ к звуку
// Я иметь не могу, если не буду использовать pulseaudio, замерим старыми дедовскими методами
// При помощи clock_gettime
}

View File

@ -1,63 +0,0 @@
#include "substitutions.h"
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <termios.h>
#include <time.h>
/* Use this variable to remember original terminal attributes. */
struct termios saved_attributes;
void reset_input_mode()
{
tcsetattr (STDIN_FILENO, TCSANOW, &saved_attributes);
}
void set_input_mode()
{
struct termios tattr;
char *name;
/* Make sure stdin is a terminal. */
if (!isatty (STDIN_FILENO))
{
fprintf (stderr, "Not a terminal.\n");
exit (EXIT_FAILURE);
}
/* Save the terminal attributes so we can restore them later. */
tcgetattr (STDIN_FILENO, &saved_attributes);
atexit (reset_input_mode);
/* Set the funny terminal modes. */
tcgetattr (STDIN_FILENO, &tattr);
tattr.c_lflag &= ~(ICANON|ECHO); /* Clear ICANON and ECHO. */
tattr.c_cc[VMIN] = 0;
tattr.c_cc[VTIME] = 0;
tcsetattr (STDIN_FILENO, TCSAFLUSH, &tattr);
}
void delay(unsigned int ms)
{
usleep(ms * 1000);
}
char isKeyPressed()
{
char key_handler = 0;
read(STDIN_FILENO, &key_handler, 1);
if (key_handler > 0)
{
return 1;
}
return 0;
}
int main()
{
set_input_mode();
while (isKeyPressed() == 0) {printf("hell\n");}
printf("ok\n");
reset_input_mode();
}

View File

@ -1,9 +0,0 @@
#ifndef SUBSTITUTIONS_H
#define SUBSTITUTIONS_H
void reset_input_mode();
void set_input_mode();
void delay(unsigned int ms);
char isKeyPressed();
#endif

View File

@ -1,97 +0,0 @@
; Эта директива делает функцию видимой.
; По умолчанию в ассемблере используется _start,
; но поскольку для вывода на экран я пользуюсь
; С'шной функцией prinf, для корректного подключения библиотек на этапе линковки
global main
; Объявляю, что буду ссылаться на метку printf, которой нет внутри кода программы
; extern вообще обзначает, что метка объявлена где-то еще
extern printf
; тут объявлен макрос CLOCK_REALTIME, который на этапе ассемблирования заменится на число 0
; Использован он тут, так как является clock_id, о котором будет сказано позже. И я не уверен
; что на всех системах это число будет одинаково. Свое я посмотрел в файлах компилятора.
%define CLOCK_REALTIME 0
; так в ассемблере задаются структуры. Существуют они лишь на уровне препроцессора
; да и применение их весьма специфично. Но подробнее лучше погуглите
; struct timespec { time_t tv_sec; long tv_nsec; } - это шаблон из C
struc timespec
.tv_sec: resq 1
.tv_nsec: resq 1
endstruc
section .note.GNU-stack ; чтобы не жаловался линкер
; Секция с данными, ее особенность в том, что нужно указать лишь сколько нужно зарезервировать
section .bss
; вообще можно было бы использовать istruc и создать эти 2 структуры в .data, но я решил,
; что не хочу тратить время на инициализацию того, что и так будет перезаписано
; обе эти инструкции просто нужны чтобы застолбить по 16 памяти на каждый замер времени
; потому что time_t и long имеют размер 8 байт, а поля 2
start:
resq 2
finish:
resq 2
; Секция с данными, которые заранее заполняются чем-то
section .data
fstring db "Operations took %ul seconds and %ul nanoseconds", 10, 0 ; строки стиля C должны оканчиваться нулем
flen equ $-fstring ; длина строки. $ - это текущий адрес. Подробнее не буду рассказывать - мне лень
section .text
main: ; лично в моей системе time_t представляет из себя long int
mov rax, 228 ; Системный вызов получения времени
mov rdi, CLOCK_REALTIME
mov rsi, start
syscall
; здесь место для кода под замер времени
mov rcx, 20000 ; сколько раз нужно прогнать цикл
; цикл
looper:
mov rax, start
loop looper ; про это чуть позже узнаете
; замеряем время второй раз
mov rax, 228
mov rdi, CLOCK_REALTIME
mov rsi, finish
syscall
; считаем время для секунда и миллисекунд
; секунды
mov rsi, [finish + timespec.tv_sec]
sub rsi, [start + timespec.tv_sec]
; наносекунды
mov rdx, [finish + timespec.tv_nsec]
sub rdx, [start + timespec.tv_nsec]
; вызываем функцию printf. Согласно соглашению о вызовах fastcall
; при вызове функций для передачи аргументов используются регистры по порядку следования аргументов
; rdi, rsi, rdx, rcx, r8, r9, а остальные пушатся в ассемблер.
; Свои заморочки там с числами с плавающей точкой, но об этом не сейчас
mov rdi, fstring
mov rax, 0
; Вот тут все во имя выравнивания стека. Об этом я сейчас рассказывать не буду, только если попросят в readme чиркану
sub rsp, 8
; собственно вызов функции. На самом деле это обычный jmp, который предварительно пушит в стек адрес возврата.
; в будущем будьте аккуратнее с этими приколами, потому что при встрече ключевого слова ret ассемблер всегда.
; подчеркиваю ВСЕГДА прочитает 8 байт со стека и передаст туда управление. И как бы что там будет - одному богу ведомо
; Так что в ваших же интересах следить за тем, чтобы в стеке лежали правильные байты
call printf
; поскольку выравнивание больше не нужно, возвращаем стек в исходное состояние
add rsp, 8
exit:
; Тут происходит системный вызов выхода из приложения. Если его не увидит
; linux, то он решит, что программа завершилась аварийно
mov rax, 60
mov rdi, 0 ; код ошибки. если вернется 0 - считается, что ошибок не произошло
syscall

13
03-asm-bios/Makefile Normal file
View File

@ -0,0 +1,13 @@
ASM = nasm
ASM_FLAGS = -felf64 -g
LINK = ld
%: %.o
$(LINK) -o $@ $^
%.o: %.asm
$(ASM) $(ASM_FLAGS) $^ -o $@
clean:
rm -f *.o
rm -f $(subst .asm, $(empty), $(wildcard *.asm))

View File

@ -2,3 +2,13 @@
## Ассемблер и функции BIOS
В этой работе намного проще посмотреть непосредственно решения и почитать комментарии к коду, чем читать теоретическое приложение к работе. Если вам все же что-то не понятно - кидайте в issues
Впрочем зная, что основная масса народу не будет делать эту лабу так, как сделал ее я, сюда вряд ли кто-то заглянет)
### Касаемо Makefile
Для того чтобы не писать много команд для однотипной и монотонной сборки проекта, был написан простой Makefile. Однако работает он следующим образом: он принимает название цели сборки и ищет файл с именем цели и расширением .asm. Если не находит - не собирает цель.
Важно заметить, что он не умеет линковать другие файлы в ассемблер, потому что написан был не для этого. Он просто берет голый файл на NASM (обязательно) и выдает 64-битный ELF из этого единственного файла. Если вам необходимо что-то прилинковать к ассемблеру, то увы, придется собирать проект вручную или менять этот makefile

81
03-asm-bios/task2.asm Normal file
View File

@ -0,0 +1,81 @@
global _start
%define STDIN 0
%define STDOUT 1
%define STDERR 2
section .data
src db 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
src_size equ $-src
; резервируем 1 килобайт для буффера ввода и вывода
; также в отдельной переменной сохраняем размер этого буфера
print_buf: times 1024 db 0
buf_size equ $-print_buf
section .text
%macro DIGIT_TO_ASCII 1 ; макрос, принимающий один регистр
add %1, '0'
%endmacro
%macro PUSH_M 1-* ; push many; пушит в порядке следования
%rep %0
push %1
%rotate 1
%endrep
%endmacro
%macro POP_M 1-* ; pop many. читает в порядке следования
%rep %0
pop %1
%rotate 1
%endrep
%endmacro
%macro RPOP_M 1-* ; pop many. читает в обратном порядке
%rotate -1
%rep %0
pop %1
%rotate -1
%endrep
%endmacro
; Передачу аргументов будем делать при помощи ABI - стандартная практика для linux
; Аргументы передаются в следующем порядке: rdi, rsi, rdx, rcx, r8, r9. Все, что не влезло, пушится в стек
; У передачи через стек тоже есть особенности, но их мы пока касаться не будем
print_from_buf: ; word -> void
PUSH_M rax, rsi, rdx, rdi ; сохраним регистры, которые точно попортим
mov rdx, rdi ; сколько выводить, в rdi содержится единственный аргумент
mov rsi, print_buf ; откуда выводить. Адрес буфера
mov rdi, STDOUT; куда выводить. Дескриптор файла. В нашем случае стандартного вывода
mov rax, 1
syscall
RPOP_M rax, rsi, rdx, rdi ; вернем значения регистров
ret
_start:
mov rcx, src_size
mov rsi, src
mov rdi, print_buf
xor rax, rax ; обнуляем регистр
.transfer: ; в цикле передаем данные, попутно конвертируя их в ascii
lodsb
DIGIT_TO_ASCII rax
stosb
loop .transfer
mov [rdi + 1], BYTE `\n` ; Чтобы система не ругалась на отсутствие переноса
mov rdi, src_size
call print_from_buf
exit:
mov rax, 60
mov rdi, 0
syscall

219
03-asm-bios/task4.asm Normal file
View File

@ -0,0 +1,219 @@
global _start
%define STDIN 0
%define STDOUT 1
%define STDERR 2
section .data
; резервируем 1 килобайт для буффера ввода и вывода
; также в отдельной переменной сохраняем размер этого буфера
print_buf: times 1024 db 0
buf_size equ $-print_buf
input_buf: times 1024 db 0 ; буфер, в который будут читаться символы со стандартного ввода
input_size equ $-input_buf
array: times 512 dq 0 ; молимся, чтобы никому не пришло в голову писать так много
arr_size equ $-array
; Для poll
%define POLLIN 0x001 ; Есть ли что почитать с буфера ввода. Понадобится для продолжения ввода
input_pollfd: dd STDIN
dw POLLIN
revents: dw 0 ; возвращаемые события
section .text
%macro DIGIT_TO_ASCII 1 ; макрос, принимающий один аргумент (регистр или память)
add %1, '0'
%endmacro
%macro ASCII_TO_DIGIT 1 ; макрос, принимающий один аргумент (регистр или память)
sub %1, '0'
%endmacro
%macro PUSH_M 1-* ; push many; пушит в порядке следования
%rep %0
push %1
%rotate 1
%endrep
%endmacro
%macro POP_M 1-* ; pop many. читает в порядке следования
%rep %0
pop %1
%rotate 1
%endrep
%endmacro
%macro RPOP_M 1-* ; pop many. читает в обратном порядке
%rotate -1
%rep %0
pop %1
%rotate -1
%endrep
%endmacro
%macro PUSHR8 1; закинуть восьмибитный регистр в стек
dec rsp
mov [rsp], %1
%endmacro
; Передачу аргументов будем делать при помощи ABI - стандартная практика для linux
; Аргументы передаются в следующем порядке: rdi, rsi, rdx, rcx, r8, r9. Все, что не влезло, пушится в стек
; У передачи через стек тоже есть особенности, но их мы пока касаться не будем
clean_print_buf: ; none -> void
PUSH_M rax, rcx, rdi
mov rcx, buf_size
mov rdi, print_buf
xor rax, rax ; будем заносить нули во всю память
rep stosb
RPOP_M rax, rcx, rdi
ret
print_from_buf: ; qword -> void; пытается вывести данные из буфера. аргумент не может быть больше 1024
PUSH_M rax, rsi, rdx, rdi ; сохраним регистры, которые точно попортим
mov rdx, rdi ; сколько выводить, в rdi содержится единственный аргумент
mov rsi, print_buf ; откуда выводить. Адрес буфера
mov rdi, STDOUT; куда выводить. Дескриптор файла. В нашем случае стандартного вывода
mov rax, 1
push rcx
syscall
pop rcx
RPOP_M rax, rsi, rdx, rdi ; вернем значения регистров
ret
read_to_buf: ; none -> void. Пытается заполнить буфер из стандартного ввода
PUSH_M rdi, rsi, rdx
mov rdi, STDIN ; откуда читать (дескриптор файла)
mov rsi, input_buf ; куда читать
mov rdx, input_size ; Сколько пытаемся читать
mov rax, 0 ; системный вызов чтения
syscall
RPOP_M rdi, rsi, rdx ; rax содержит количество прочитанных байт, а это важно
ret
poll_stdin:
PUSH_M rdi, rsi, rdx
mov rsi, 1 ; следим только за одним потоком
mov rax, 7 ; poll syscall
mov rdi, input_pollfd
mov rsi, 1 ; одна структура данных (изначально просто вызов принимает кучу таких)
mov rdx, 0 ; не ждать
syscall
RPOP_M rdi, rsi, rdx
ret
print_number: ; qword (rdi) -> void
; наша задача - сформировать массив символов.
; Ну а раз мы не знаем точно сколько их будет, формировать его будем прямо в стеке. нам повезло, что он растет вниз
; Нам очень повезло, что он растет вниз
; создадим 2 локальные переменные - одну для размера массива, другую для делителя
push rbp
PUSH_M rdx, rdi, rsi ; сохранять регистры обязательно надо до того, как писать в стек символы
; создаем базу для адресации. Тогда первая будет на rbp - 8 - делитель, а вторая на rbp - 16 - количество
mov rbp, rsp
; [WARNING] тут надо будет сохранить регистры
push rsp ; сохраню, потому что после всей вакханалии я концов не сыщу
sub rsp, 16 ; выделяем место под 3 переменные
mov qword [rbp - 16], 10 ; пусть и жирно, но операнд обязан быть 64 разрядным для корректного деления
mov qword [rbp - 24], 0 ; счетчик
mov rax, rdi
push byte 0 ; при выводе он ориентируется на это как на конец строки
.division_loop:
xor rdx, rdx ; обнулим найденый остаток. (он просто еще и при делении принимает участие)
div qword [rbp - 16]
DIGIT_TO_ASCII dl
PUSHR8 dl ; поскольку в процессор не завезли возможность закинуть в стек 8 битный регистр, я им немного помог макросами
inc qword [rbp - 24] ; увеличиваем счетчик на единицу
test rax, rax ; делает and поразрядное с самим собой. Меня интересует, лежит ли в rax ноль
jnz .division_loop ; если в rax не ноль, то продолжаем цикл
; выводим число
mov rax, 1
mov rdi, STDOUT
mov rsi, rsp
mov rdx, [rbp-24] ; уже не надо очищать, потому что в конце я просто восстановлю как было
push rcx
syscall
pop rcx
mov rsp, [rbp - 8]
RPOP_M rdx, rdi, rsi
pop rbp
ret
_start:
mov rbp, rsp
; Создадим 2 локальные переменные для аккумулятора размером 8 байт и для математических нужд 8 байт.
; аккумулятор будет по адресу rbp - 8, а временная по rbp - 16
sub rsp, 16
; потом я не удержался и завел еще одну переменную - сколько мы успели написать в массив
sub rsp, 2 ; массив все равно размером всего 512, делать переменную больше нет смысла. rbp - 18
mov rsi, input_buf
mov rdi, array
.read_loop:
call read_to_buf ; системный вызов read вернет количество прочитаных байтов
mov rcx, rax ; сколько байтов прочиталось, столько и обработаем
; обработаем информацию
xor rax, rax ; обнулим на всякий пожарный
jmp .read_byte
.separator_occured:
dec rcx
mov rax, [rbp - 8]
stosq
xor rax, rax
inc word [rbp - 18]
mov qword [rbp - 8], 0
test rcx, rcx
jz .check_buf
.read_byte: ; цикл чтения
lodsb
; проверим, цифра ли это. Если нет, то записываем в память то, что хранилось в локальной переменной
cmp al, '0'
jl .separator_occured
cmp al, '9'
jg .separator_occured
ASCII_TO_DIGIT al ; Если цифра, то конвертируем ее из ascii
; Поскольку умножение и деление можно сделать только через регистр, придется извратиться
PUSH_M rax, rdx
mov rax, [rbp - 8]
mov qword [rbp - 16], 10
mul qword [rbp - 16]
mov [rbp - 8], rax
RPOP_M rax, rdx
add [rbp - 8], rax ; результат деления запишем в локальную переменную
loop .read_byte ; читаем буфер ввода до конца
.check_buf:
call poll_stdin
test dword [revents], POLLIN
jnz .read_loop
; Теперь выведем прочитанный массив на экран
xor rcx, rcx
mov cx, [rbp - 18]
mov rsi, array
call clean_print_buf
.output_loop:
lodsq
mov rdi, rax
call print_number
mov byte [print_buf], ' '
mov rdi, 1
call print_from_buf ; печатаем ровно 1 пробел
loop .output_loop
mov byte [print_buf], `\n`
mov rdi, 1
call print_from_buf
exit:
mov rax, 60
mov rdi, 0
syscall