12 Commits

Author SHA1 Message Date
6794efeedd docs: маленькое пояснение к README 2024-10-02 22:23:23 +03:00
414f189d18 feat: написаны функции сравнения времени выполнения 2024-10-02 20:07:05 +03:00
4b05989ba5 fix(utils): добавил флаг отладки в Makefile 2024-10-02 20:06:42 +03:00
e86f3701fe feat: приведен шаблон для решения 3 пункта задания
Вроде там еще надо будет что-то сравнить по быстродействию, это добавлю в будущих коммитах
2024-10-02 18:10:34 +03:00
a309019bdb feat: добавлены замеры тиков для последней команды 2024-10-01 22:20:37 +03:00
f2ca981037 fix: убраны дебажные команды 2024-10-01 20:55:08 +03:00
0aed286bcb fix: исправлен недочет при расчете времени 2024-10-01 16:17:15 +03:00
541524bd6f feat: первый прототип для 2 пунтка написан 2024-10-01 15:58:31 +03:00
df80a7190e feat: написаны приготовления для 2 пункта
В приготовления входит макрос для замера времени и предварительно записанные строки для printf
2024-10-01 12:52:23 +03:00
4594912561 feat: решен первый пункт
Этот пункт действительно предполагает просто воспользоваться всеми типами адресации
2024-10-01 12:51:05 +03:00
95df24eaa5 feat: добавлена отдельная логика компиляции для task2
Дело в том, что там я намереваюсь воспользоваться фукнциями стандратной библиотеки Си, поэтому процесс компиляции должен быть особым
2024-10-01 12:49:35 +03:00
53a82c8ea0 feat: скопирован старый Makefile 2024-09-30 15:16:32 +03:00
11 changed files with 416 additions and 311 deletions

67
01-asm-basics/time.asm Normal file
View File

@ -0,0 +1,67 @@
global main
extern printf
%define CLOCK_REALTIME 0
; struct timespec { time_t tv_sec; long tv_nsec; }
struc timespec
.tv_sec: resq 1
.tv_nsec: resq 1
endstruc
section .note.GNU-stack ; чтобы не жаловался линкер
section .bss
start: ; uses timespec model
times 2 resq 1
finish:
times 2 resq 1
section .data
fstring db "Operations took %ul seconds and %ul milliseconds", 10, 0
flen equ $-fstring
section .text
main: ; лично в моей системе time_t представляет из себя long int
mov rax, 228 ; Системный вызов получения времени
mov rdi, CLOCK_REALTIME
mov rsi, start
syscall
; insert your code here
mov rcx, 20000
looper:
mov rax, start
loop looper
mov rax, 228
mov rdi, CLOCK_REALTIME
mov rsi, finish
syscall
; считаем время для секунда и миллисекунд
; секунды
mov rsi, [finish + timespec.tv_sec]
sub rsi, [start + timespec.tv_sec]
; миллисекунды
mov rdx, [finish + timespec.tv_nsec]
sub rdx, [start + timespec.tv_nsec]
mov rdi, fstring
mov rax, 0
sub rsp, 8
call printf
add rsp, 8
exit:
mov rax, 60
mov rdi, 0
syscall

View File

@ -2,13 +2,3 @@
## Ассемблер и функции BIOS
В этой работе намного проще посмотреть непосредственно решения и почитать комментарии к коду, чем читать теоретическое приложение к работе. Если вам все же что-то не понятно - кидайте в issues
Впрочем зная, что основная масса народу не будет делать эту лабу так, как сделал ее я, сюда вряд ли кто-то заглянет)
### Касаемо Makefile
Для того чтобы не писать много команд для однотипной и монотонной сборки проекта, был написан простой Makefile. Однако работает он следующим образом: он принимает название цели сборки и ищет файл с именем цели и расширением .asm. Если не находит - не собирает цель.
Важно заметить, что он не умеет линковать другие файлы в ассемблер, потому что написан был не для этого. Он просто берет голый файл на NASM (обязательно) и выдает 64-битный ELF из этого единственного файла. Если вам необходимо что-то прилинковать к ассемблеру, то увы, придется собирать проект вручную или менять этот makefile

View File

@ -1,81 +0,0 @@
global _start
%define STDIN 0
%define STDOUT 1
%define STDERR 2
section .data
src db 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
src_size equ $-src
; резервируем 1 килобайт для буффера ввода и вывода
; также в отдельной переменной сохраняем размер этого буфера
print_buf: times 1024 db 0
buf_size equ $-print_buf
section .text
%macro DIGIT_TO_ASCII 1 ; макрос, принимающий один регистр
add %1, '0'
%endmacro
%macro PUSH_M 1-* ; push many; пушит в порядке следования
%rep %0
push %1
%rotate 1
%endrep
%endmacro
%macro POP_M 1-* ; pop many. читает в порядке следования
%rep %0
pop %1
%rotate 1
%endrep
%endmacro
%macro RPOP_M 1-* ; pop many. читает в обратном порядке
%rotate -1
%rep %0
pop %1
%rotate -1
%endrep
%endmacro
; Передачу аргументов будем делать при помощи ABI - стандартная практика для linux
; Аргументы передаются в следующем порядке: rdi, rsi, rdx, rcx, r8, r9. Все, что не влезло, пушится в стек
; У передачи через стек тоже есть особенности, но их мы пока касаться не будем
print_from_buf: ; word -> void
PUSH_M rax, rsi, rdx, rdi ; сохраним регистры, которые точно попортим
mov rdx, rdi ; сколько выводить, в rdi содержится единственный аргумент
mov rsi, print_buf ; откуда выводить. Адрес буфера
mov rdi, STDOUT; куда выводить. Дескриптор файла. В нашем случае стандартного вывода
mov rax, 1
syscall
RPOP_M rax, rsi, rdx, rdi ; вернем значения регистров
ret
_start:
mov rcx, src_size
mov rsi, src
mov rdi, print_buf
xor rax, rax ; обнуляем регистр
.transfer: ; в цикле передаем данные, попутно конвертируя их в ascii
lodsb
DIGIT_TO_ASCII rax
stosb
loop .transfer
mov [rdi + 1], BYTE `\n` ; Чтобы система не ругалась на отсутствие переноса
mov rdi, src_size
call print_from_buf
exit:
mov rax, 60
mov rdi, 0
syscall

View File

@ -1,219 +0,0 @@
global _start
%define STDIN 0
%define STDOUT 1
%define STDERR 2
section .data
; резервируем 1 килобайт для буффера ввода и вывода
; также в отдельной переменной сохраняем размер этого буфера
print_buf: times 1024 db 0
buf_size equ $-print_buf
input_buf: times 1024 db 0 ; буфер, в который будут читаться символы со стандартного ввода
input_size equ $-input_buf
array: times 512 dq 0 ; молимся, чтобы никому не пришло в голову писать так много
arr_size equ $-array
; Для poll
%define POLLIN 0x001 ; Есть ли что почитать с буфера ввода. Понадобится для продолжения ввода
input_pollfd: dd STDIN
dw POLLIN
revents: dw 0 ; возвращаемые события
section .text
%macro DIGIT_TO_ASCII 1 ; макрос, принимающий один аргумент (регистр или память)
add %1, '0'
%endmacro
%macro ASCII_TO_DIGIT 1 ; макрос, принимающий один аргумент (регистр или память)
sub %1, '0'
%endmacro
%macro PUSH_M 1-* ; push many; пушит в порядке следования
%rep %0
push %1
%rotate 1
%endrep
%endmacro
%macro POP_M 1-* ; pop many. читает в порядке следования
%rep %0
pop %1
%rotate 1
%endrep
%endmacro
%macro RPOP_M 1-* ; pop many. читает в обратном порядке
%rotate -1
%rep %0
pop %1
%rotate -1
%endrep
%endmacro
%macro PUSHR8 1; закинуть восьмибитный регистр в стек
dec rsp
mov [rsp], %1
%endmacro
; Передачу аргументов будем делать при помощи ABI - стандартная практика для linux
; Аргументы передаются в следующем порядке: rdi, rsi, rdx, rcx, r8, r9. Все, что не влезло, пушится в стек
; У передачи через стек тоже есть особенности, но их мы пока касаться не будем
clean_print_buf: ; none -> void
PUSH_M rax, rcx, rdi
mov rcx, buf_size
mov rdi, print_buf
xor rax, rax ; будем заносить нули во всю память
rep stosb
RPOP_M rax, rcx, rdi
ret
print_from_buf: ; qword -> void; пытается вывести данные из буфера. аргумент не может быть больше 1024
PUSH_M rax, rsi, rdx, rdi ; сохраним регистры, которые точно попортим
mov rdx, rdi ; сколько выводить, в rdi содержится единственный аргумент
mov rsi, print_buf ; откуда выводить. Адрес буфера
mov rdi, STDOUT; куда выводить. Дескриптор файла. В нашем случае стандартного вывода
mov rax, 1
push rcx
syscall
pop rcx
RPOP_M rax, rsi, rdx, rdi ; вернем значения регистров
ret
read_to_buf: ; none -> void. Пытается заполнить буфер из стандартного ввода
PUSH_M rdi, rsi, rdx
mov rdi, STDIN ; откуда читать (дескриптор файла)
mov rsi, input_buf ; куда читать
mov rdx, input_size ; Сколько пытаемся читать
mov rax, 0 ; системный вызов чтения
syscall
RPOP_M rdi, rsi, rdx ; rax содержит количество прочитанных байт, а это важно
ret
poll_stdin:
PUSH_M rdi, rsi, rdx
mov rsi, 1 ; следим только за одним потоком
mov rax, 7 ; poll syscall
mov rdi, input_pollfd
mov rsi, 1 ; одна структура данных (изначально просто вызов принимает кучу таких)
mov rdx, 0 ; не ждать
syscall
RPOP_M rdi, rsi, rdx
ret
print_number: ; qword (rdi) -> void
; наша задача - сформировать массив символов.
; Ну а раз мы не знаем точно сколько их будет, формировать его будем прямо в стеке. нам повезло, что он растет вниз
; Нам очень повезло, что он растет вниз
; создадим 2 локальные переменные - одну для размера массива, другую для делителя
push rbp
PUSH_M rdx, rdi, rsi ; сохранять регистры обязательно надо до того, как писать в стек символы
; создаем базу для адресации. Тогда первая будет на rbp - 8 - делитель, а вторая на rbp - 16 - количество
mov rbp, rsp
; [WARNING] тут надо будет сохранить регистры
push rsp ; сохраню, потому что после всей вакханалии я концов не сыщу
sub rsp, 16 ; выделяем место под 3 переменные
mov qword [rbp - 16], 10 ; пусть и жирно, но операнд обязан быть 64 разрядным для корректного деления
mov qword [rbp - 24], 0 ; счетчик
mov rax, rdi
push byte 0 ; при выводе он ориентируется на это как на конец строки
.division_loop:
xor rdx, rdx ; обнулим найденый остаток. (он просто еще и при делении принимает участие)
div qword [rbp - 16]
DIGIT_TO_ASCII dl
PUSHR8 dl ; поскольку в процессор не завезли возможность закинуть в стек 8 битный регистр, я им немного помог макросами
inc qword [rbp - 24] ; увеличиваем счетчик на единицу
test rax, rax ; делает and поразрядное с самим собой. Меня интересует, лежит ли в rax ноль
jnz .division_loop ; если в rax не ноль, то продолжаем цикл
; выводим число
mov rax, 1
mov rdi, STDOUT
mov rsi, rsp
mov rdx, [rbp-24] ; уже не надо очищать, потому что в конце я просто восстановлю как было
push rcx
syscall
pop rcx
mov rsp, [rbp - 8]
RPOP_M rdx, rdi, rsi
pop rbp
ret
_start:
mov rbp, rsp
; Создадим 2 локальные переменные для аккумулятора размером 8 байт и для математических нужд 8 байт.
; аккумулятор будет по адресу rbp - 8, а временная по rbp - 16
sub rsp, 16
; потом я не удержался и завел еще одну переменную - сколько мы успели написать в массив
sub rsp, 2 ; массив все равно размером всего 512, делать переменную больше нет смысла. rbp - 18
mov rsi, input_buf
mov rdi, array
.read_loop:
call read_to_buf ; системный вызов read вернет количество прочитаных байтов
mov rcx, rax ; сколько байтов прочиталось, столько и обработаем
; обработаем информацию
xor rax, rax ; обнулим на всякий пожарный
jmp .read_byte
.separator_occured:
dec rcx
mov rax, [rbp - 8]
stosq
xor rax, rax
inc word [rbp - 18]
mov qword [rbp - 8], 0
test rcx, rcx
jz .check_buf
.read_byte: ; цикл чтения
lodsb
; проверим, цифра ли это. Если нет, то записываем в память то, что хранилось в локальной переменной
cmp al, '0'
jl .separator_occured
cmp al, '9'
jg .separator_occured
ASCII_TO_DIGIT al ; Если цифра, то конвертируем ее из ascii
; Поскольку умножение и деление можно сделать только через регистр, придется извратиться
PUSH_M rax, rdx
mov rax, [rbp - 8]
mov qword [rbp - 16], 10
mul qword [rbp - 16]
mov [rbp - 8], rax
RPOP_M rax, rdx
add [rbp - 8], rax ; результат деления запишем в локальную переменную
loop .read_byte ; читаем буфер ввода до конца
.check_buf:
call poll_stdin
test dword [revents], POLLIN
jnz .read_loop
; Теперь выведем прочитанный массив на экран
xor rcx, rcx
mov cx, [rbp - 18]
mov rsi, array
call clean_print_buf
.output_loop:
lodsq
mov rdi, rax
call print_number
mov byte [print_buf], ' '
mov rdi, 1
call print_from_buf ; печатаем ровно 1 пробел
loop .output_loop
mov byte [print_buf], `\n`
mov rdi, 1
call print_from_buf
exit:
mov rax, 60
mov rdi, 0
syscall

24
04-addr-methods/Makefile Normal file
View File

@ -0,0 +1,24 @@
ASM = nasm
CXX = gcc
CXX_FLAGS = -Og -static
ASM_FLAGS = -felf64 -g
LINK = ld
task3: task3_c.o task3.o
$(CXX) -Og $^ -o $@ -g
task3_c.o: task3.c
$(CXX) -Og -c $^ -o $@ -g
task2: task2.o
$(CXX) $(CXX_FLAGS) $^ -o $@
%: %.o
$(LINK) -o $@ $^
%.o: %.asm
$(ASM) $(ASM_FLAGS) $^ -o $@
clean:
rm -f *.o
rm -f $(subst .asm, $(empty), $(wildcard *.asm))

View File

@ -1,4 +1,4 @@
# Лабораторная работа 4
## Способы адресации и сегментная организация памяти
На данный момент нормального README не будет, потому что у меня немного нет времени его офомить. Как только сдам лабу - напишу тут немного больше

33
04-addr-methods/task1.asm Normal file
View File

@ -0,0 +1,33 @@
global _start
section .data
%macro FILL_ASC 1
%assign NUM 0
%rep %1
db NUM
%assign NUM NUM + 1
%endrep
%endmacro
example: FILL_ASC 256
section .text
_start:
; В качестве базы возьму inc
; регистровая
inc ecx
mov rax, example
; косвенно-регистровая
inc byte [rax]
; "Индексно-базовая", хотя у меня почти все может быть базой
inc byte [rax + rbx]
; "Индексно-базовая" со смещением
inc byte [rax + rbx + 122]
; Ну в целом... все
mov rax, 60
mov rdi, 0
syscall

139
04-addr-methods/task2.asm Normal file
View File

@ -0,0 +1,139 @@
global main
extern printf
struc timespec ; структура, в которой линукс хранит время. Тут нужна для удобства в будущем
.tv_sec: resq 1
.tv_nsec: resq 1
endstruc
%include "timer.inc"
section .note.GNU-stack
section .data
example: times 128 db 127
section .bss
; uses timespec model
start: resq 2
finish: resq 2
deltatime: resq 2
section .text
%macro PUSH_M 1-*
%rep %0
push %1
%rotate 1
%endrep
%endmacro
%macro RPOP_M 1-*
%rotate -1
%rep %0
pop %1
%rotate -1
%endrep
%endmacro
%define CLOCK_REALTIME 0
%macro TIME_1_000_000 0-1+ ; принимает команду, которую будет пытаться обмерить по времени
PUSH_M rax, rdi, rsi, rcx
mov rax, 228 ; Время начала
mov rdi, CLOCK_REALTIME
mov rsi, start
syscall
RPOP_M rax, rdi, rsi, rcx
mov rcx, 10000000000; выполняем миллион раз
%%loop:
%1
loop %%loop
PUSH_M rax, rdi, rsi, rcx
mov rax, 228 ; Время конца
mov rdi, CLOCK_REALTIME
mov rsi, finish
syscall
RPOP_M rax, rdi, rsi, rcx
; считаем секунды
push rax ; можно было бы оптимизировать, но мне лень макросы переписывать
mov rax, [finish + timespec.tv_sec]
sub rax, [start + timespec.tv_sec]
mov [deltatime + timespec.tv_sec], rax
; считаем наносекунды
mov rax, [finish + timespec.tv_nsec]
sub rax, [start + timespec.tv_nsec]
jns %%save_result
dec qword [deltatime + timespec.tv_sec] ; занимаем миллиард наносекунд
add rax, 1000000000 ; прибавляем занятый разряд
%%save_result:
mov [deltatime + timespec.tv_nsec], rax
pop rax
%endmacro
%macro PRINT_DELTATIME 1
;sub rsp, 8
mov rdi, str_template
mov rsi, %1
mov rdx, [deltatime + timespec.tv_sec]
mov rcx, [deltatime + timespec.tv_nsec]
call printf
;add rsp, 8
%endmacro
main:
push rbp
mov rbp, rsp
sub rsp, 16
xor rax, rax ; поскольку приходим сюда из компилятора, лучше обнулить
TIME_1_000_000
PRINT_DELTATIME nop_command
TIME_1_000_000 inc rax
PRINT_DELTATIME reg_command
mov rax, example
TIME_1_000_000 inc byte [rax]
PRINT_DELTATIME rel_reg
mov rax, example
xor rbx, rbx
TIME_1_000_000 inc byte [rax + rbx]
PRINT_DELTATIME ind_base
mov rax, example
xor rbx, rbx
TIME_1_000_000 inc byte [rax + rbx + 122]
PRINT_DELTATIME ind_base_disp
; Под конец давайте посчитаем тактовую частоту на примере той же самой команды
rdtsc
mov [rbp - 4], edx
mov [rbp - 8], eax
mov rcx, 10000000000
mov rax, example
xor rbx, rbx
.loop:
inc byte [rax + rbx + 122]
loop .loop
rdtsc
sub eax, [rbp - 8]
sbb edx, [rbp - 4]
mov [rbp - 8], eax
mov [rbp - 4], edx
mov [rbp - 16], rsp
and rsp, -16
mov rdi, tick_count
mov rsi, [rbp - 8]
call printf
mov rsp, rbp
pop rbp
xor rax, rax ; сообщаем gcc, что все закончилось успешно
ret

96
04-addr-methods/task3.asm Normal file
View File

@ -0,0 +1,96 @@
global fill_arr1
global fill_arr2
section .note.GNU-stack
section .text
%macro PUSH_M 1-*
%rep %0
push %1
%rotate 1
%endrep
%endmacro
%macro RPOP_M 1-*
%rotate -1
%rep %0
pop %1
%rotate -1
%endrep
%endmacro
fill_arr1:
push rbp
mov rbp, rsp
PUSH_M rdi, rsi, rdx
; Вычисляем сколько числе в строке
mov rax, [rbp - 16]
xor rdx, rdx
div qword [rbp - 24]
push rax ; сохраняем в локальные переменные. rbp - 32
; Вычисляем сколько проходов цикла необходимо
mov rax, [rbp - 24]
xor rdx, rdx
mov rcx, 2
div rcx
push rax ; rbp-40
; Надеюсь rdi не успел поменяться
; заполняем память
push rbx
mov rbx, [rbp - 32]
mov rcx, [rbp - 40]
mov rax, 777 ; специально такое число, чтобы выделялось
.next_row:
push rcx
mov rcx, [rbp - 32]
rep stosd
lea rdi, [rdi + 4 * rbx] ; пропускаем строку
pop rcx
loop .next_row
pop rbx
add rsp, 16 ; чистим 2 доп переменные, образовавшиеся в процессе вычислений
RPOP_M rdi, rsi, rdx
pop rbp
ret
fill_arr2:
push rbp
mov rbp, rsp
PUSH_M rdi, rsi, rdx
; Вычисляем сколько числе в строке
mov rax, [rbp - 16]
xor rdx, rdx
div qword [rbp - 24]
push rax ; сохраняем в локальные переменные. rbp - 32
; Вычисляем сколько проходов цикла необходимо
mov rax, [rbp - 24]
xor rdx, rdx
mov rcx, 2
div rcx
push rax ; rbp-40
; Надеюсь rdi не успел поменяться
; заполняем память
push rbx
mov rbx, [rbp - 32]
mov rcx, [rbp - 40]
mov rax, 777 ; специально такое число, чтобы выделялось
.next_row:
push rcx
mov rcx, [rbp - 32]
.fill:
mov [rdi], rax
lea rdi, [rdi + 4]
loop .fill
lea rdi, [rdi + 4 * rbx] ; пропускаем строку
pop rcx
loop .next_row
pop rbx
add rsp, 16 ; чистим 2 доп переменные, образовавшиеся в процессе вычислений
RPOP_M rdi, rsi, rdx
pop rbp
ret

43
04-addr-methods/task3.c Normal file
View File

@ -0,0 +1,43 @@
#include <stdio.h>
#include <time.h>
extern void fill_arr1(int* arr, size_t size, size_t row_count);
extern void fill_arr2(int* arr, size_t size, size_t row_count);
double measure_fill_time(void(*function)(int*, size_t, size_t), int* arr, size_t size, size_t row_count)
{
const size_t times = 10000000;
clock_t begin = clock();
for (size_t i = 0; i < times; i++)
{
function(arr, size, row_count);
}
clock_t end = clock();
return (double)(end - begin)/(CLOCKS_PER_SEC);
}
int main()
{
const int arr_size = 256;
int array1[arr_size];
printf("String methods took %fs to loop 10,000,000 times\n", measure_fill_time(fill_arr1, array1, arr_size, 16));
for (size_t i = 0; i < arr_size; i++)
{
printf("%d ", array1[i]);
}
printf("\b \n");
int array2[arr_size];
printf("Lea methods took %fs on to loop 10,000,000 times\n", measure_fill_time(fill_arr2, array2, arr_size, 16));
for (size_t i = 0; i < arr_size; i++)
{
printf("%d ", array2[i]);
}
printf("\b \n");
return 0;
}

13
04-addr-methods/timer.inc Normal file
View File

@ -0,0 +1,13 @@
section .data
str_template: db "Command %s took %lld seconds and %lld nanoseconds to execute 1 000 000 000 times", 10, 0
template_len equ $-str_template
nop_command: db '`empty loop`', 0
reg_command: db '`inc ebx`', 0
rel_reg: db '`inc byte [rax]`', 0
ind_base: db '`inc byte [rax + rbx]`', 0
ind_base_disp: db '`inc byte [rax + rbx + 122]`', 0
tick_count: db 'Last command also took %lli ticks to complete', 10, 0